Convergence of weighted averages of relaxed projections
نویسندگان
چکیده
منابع مشابه
Convergence of Weighted Averages of Relaxed Projections
The convergence of the algorithm for solving convex feasibility problem is studied by the method of sequential averaged and relaxed projections. Some results of H. H. Bauschke and J. M. Borwein are generalized by introducing new methods. Examples illustrating these generalizations are given.
متن کاملConvergence of weighted polynomial multiple ergodic averages
In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was cov...
متن کاملConvergence of Weighted Averages of Random Variables Revisited
We show that for a large class of positive weights including the ones that are eventually monotone decreasing and those that are eventually monotone increasing but vary regularly, if the averages of random variables converge in some sense, then their corresponding weighted averages also converge in the same sense. We will also replace the sufficient conditions in the fundamental result of Jamis...
متن کاملConvergence of Diagonal Ergodic Averages
The case l = 1 is the mean ergodic theorem, and the result can be viewed as a generalization of that theorem. The l = 2 case was proven by Conze and Lesigne [Conze and Lesigne, 1984], and various special cases for higher l have been shown by Zhang [Zhang, 1996], Frantzikinakis and Kra [Frantzikinakis and Kra, 2005], Lesigne [Lesigne, 1993], and Host and Kra [Host and Kra, 2005]. Tao’s argument ...
متن کاملA Norm Convergence Result on Random Products of Relaxed Projections in Hilbert Space
Suppose A' is a Hilbert space and C\.Cjy are closed convex intersecting subsets with projections P\, ... , P^ ■ Suppose further r is a mapping from N onto {\, ... , N) that assumes every value infinitely often.We prove (a more general version of) the following result: If the TV-tuple (C\, ... , C#) is "innately boundedly regular", then the sequence (xn), defined by xo € X arbitrary, xn+i := Pr(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2017
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2017.1382442